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Abstract

This paper gives an overview of some recent methods
useful for local and global shape analysis and for the design
of solids. These methods include as new tools for global
and local shape analysis the Spectra of the Laplace and
the Laplace-Beltrami Operator and the Concept of stable
Umbilical Points i.e. stable singularities of the principal
curvature line wire frame model of the solid’s boundary sur-
face. Most material in this paper deals with the Medial Axis
Transform as a tool for shape interrogation, reconstruction,
modification and design. We show that it appears to be pos-
sible to construct an intuitive user interface that allows to
mould shape employing the Medial Axis Transform. We also
explain that the Medial Axis and Voronoi Diagrams can be
defined and computed as well on free form surfaces in a set-
ting where the geodesic distance between two points p, g on
asurface S is defined by the shortest surface path on S join-
ing the two points p, ¢. This leads to the natural and com-
putable generalized concepts of geodesic Medial Axis and
geodesic Voronoi Diagram on free form surfaces. Both can
be computed with a reasonable speed and with a high ac-
curacy (of about 12 digits when double floating point arith-
metic is used for the computations).

1 Introduction

As the information age is rapidly changing our modern
world, the relative contributions of different components
defining our economies are changing rapidly as well. A
major part of economic value creation in our modern so-

1This was paper written while F.-E. Wolter was a visiting professor at
MIT during his research sabbatical in the winter term 1999/2000.

ciety is not given any more by fabricating single physical
objects, but is created within the context of information ex-
change. An essential initial part of the effort needed to fab-
ricate physical objects is in the design process creating the
3D digital model description of the object.

In the past these 3D solid model descriptions were pre-
sented with a fairly restrictive shape variety, by 2D - draw-
ings (blueprints). Today these 3D solid objects are typi-
cally described with CAD systems using digital data sets.
Here the richest shape variety can be reached by solids with
free form boundary surfaces that are typically defined by
Non-Uniform Rational B-Spline (NURBS) surface patches.
Consequently the most important and most fundamental
part of the value creation process for 3D object consists in
creating the digital 3D solid model bounded by free form
surfaces.

2 Two Fundamental Problems in Solid
Modeling

2.1 Approximate Shape Identity

There exist several basic problems in the context we ad-
dress here. The first problem is to answer the question:
Are two solid objects that are presented to a computerized
system in (perhaps completely) different representations ap-
proximately describing a solid object with the same shape?
Here one of the objects might be described with patches of
splines or as a solid with a facetted boundary surface or even
by using implicit functions for parts of its boundary surface!
One of the two solids might have been scaled. In the end
we want to decide if the solids agree approximately after
appropriately scaling or moving one of them in space. This
check for approximate shape identity is then of course also



closely related to the problem to facilitate appropriately the
Data Exchange beween different systems describing solids
in different ways as indicated above employing e.g. implicit
functions, NURBS or facetted boundary surfaces.

Therefore it may be necessary to find an appropriate
practical standard as to exchange the data describing a solid
beween different CAD systems that may use completely dif-
ferent definition standards as to describe the shape, cf. the
options already indicated above. For this we would have
to create approximate representations allowing convenient
conversion methods! This question of approximate conver-
sion is then immidiately related to the problem to find ap-
proximations using a small number of data and satisfying
still certain accuracy requirements. The latter problem can
be viewed to belong to the area of data compression!

2.2 Intuitive User Interface to Mould a Rich
Shape Variety of Solids

The other fundamental problem related to the solid in
space is the development of appropriate methods to de-
sign shape in a way that can be perceived as human user
friendly allowing considerable shape varieties and offer-
ing also the possibility to appeal to human intuition when
moulding shape. Hence the system should have a nice intu-
itive user interface that relates to the human haptic interac-
tion with shape when moulding and perceiving shape. The
latter feature is desirable because e.g. shape designers for
the car industry still refuse to use current CAD tools to de-
sign shape as the CAD systems (at least according to the
requirements of the designers) do not properly allow a nat-
ural haptic perception of the designed shape. Hence design
practioners (being usually sensitive artists) until today pre-
fer clay moulding to design shape because the latter offers
an intuitive and natural haptic feedback and control of the
design process. We as human beeings have to accept that
our haptic (tactile) analog interaction with the world is in
some sense perhaps our most direct and fundamental in-
teraction with the world. The human skin is a huge sense
organ perceiving temperature, pressure, vibrations, rough-
ness, recognizing palpable symmetries, recognizing 2D and
3D - (sculptured) shape structures and most importantly
perceiving (and giving) via human touching in the most fun-
damental ways affection, love and consolation. It is gener-
ally accepted that without perceiving and giving the latters
our human existence would be miserable and empty.

3 History of this Paper’s Material

This paper will discuss and will give an overview (gen-
erally without proofs) of concepts and results that address
both fundamental questions presented above in 2.1 and 2.2.
However the main emphasis will be on the second subject

discussing background and suggesting possibilities of de-
signing shape and suggesting an interface offering intuitive
design possibilities resembling shape moulding. The theo-
retical considerations behind this paper reflect some impor-
tant directions of the lead author’s own research during the
past twenty years. As far as the Medial Axis is involved this
paper is essentially based on F.-E. Wolter’s theoretical grad-
uate research originating in his thesis work on the cut locus,
see [6] or even earlier see [9]. In some meta sense his by
now fairly old thesis [6] covers (the difficult parts of) most
material presented in [2], the latter paper is perhaps mainly
restating the special Euclidean Cases of more general re-
sults contained in [6]. Nonetheless despites its theoretical
relevance for this field without the development of appro-
priate programs and visualization systems all these theoret-
ical considerations in [6], [2] would have remained (may be
interesting, beautiful) but only theoretical fantasies. How-
ever this changed with the lead author’s arrival at the Uni-
versity of Hannover when he started teaching graphics and
geometric modeling courses in summer 1995. Since then a
considerable number of bright and dedicated students have
been working with him and helped to put some of his old
(theoretical) visions into concrete prototype programming
systems proving that the theoretical considerations would
indeed finally yield reasonable perhaps even efficient algo-
rithms. Therefore the material sketchily covered in this pa-
per reflects also the efforts of many of F.-E. Wolter’s stu-
dents during the past four years. Those students helped to
develop the research mostly through contributions in their
master theses and sometimes in their senior theses. The stu-
dents who did work in the context of this paper were O.
Sniehotta with his senior thesis and R. Kunze, M. Baer with
their master theses work that finally lead to the computation
of geodesic medial curves, geodesic Voronoi Diagrams and
the geodesic Medial Axis on bordered surfaces. The latter
problems posed computational difficulties that had been re-
sistant against computational efforts for quite a while. Most
intensely involved in particular in the efforts related to the
geodesic Medial Axis was the lead author’s former Ph.D.
student T. Rausch whose thesis work (among other sub-
jects) was dealing heavily with the analytical, geometrical
and numerical aspects of precise and reasonably fast dif-
ferential equation methods useful to compute the geodesic
Medial Axis (see [3] and [4]). In the Medial Axis research
in the Euclidean Case there were involved O. Etzmuss (with
his senior thesis for the 2D-Curved-Boundary case), P. von
Grumbkow for 2D- and 3D solids with piece wise linear
boundary and A. Howind who in his master thesis discussed
the subject of modifying (and designing) a solid’s shape by
modifying the associated maximal disc radius function de-
fined on the original Medial Axis. This research idea had
first been submitted by the lead author within a fairly large
group proposal to the German DFG in October 1996. Un-



fortunately this proposal did not get funded. Consequently
some of the planned research was then done not as spon-
sored research but within some master theses projects. As
a result of this P. v. Grumbkow’s and A. Howind’s master
theses show that considerable parts of the proposed research
ideas would indeed work out and this paper here now uses
many of A. Howind’s figures to illustrate this. Furthermore
related to the Medial Axis is also the master thesis of the
lead author’s former student A. Kaiser discussing compu-
tations of orthogonal projection curves. A. Kaiser studied
delicate situations that arise when computing on a surface
S a surface point nearest to a given space point p when p is
approaching a curvature center of the surface S.

The precedingly sketched material was mainly related to
the Medial Axis in the Euclidean and in the Geodesic Case.
It will turn out later that this Medial Axis material will al-
ready cover all of the items mentioned in the title of this
paper. However we shall also briefly sketch two additional
methods that are “Local and Global Geometric Methods for
Analysis, Interrogation of Shape” as it was announced in
this papers title. These two methods can then be viewed as
methods supporting the treatment of the fundamental prob-
lem 2.1 described above).

Figure 1. Geodesics on awave like parametric
surface defined by trigonometric functions

The first of those additional methods is related to more
recent ongoing research using also work contained in two
master theses investigating how the Spectrum of the Laplace
Operator or how the Spectrum of the Laplace-Beltrami Op-
erator could well be used to analyse shape similarities. It
is theoretically known that those Spectra (being Isometry
invariants of the domains or surfaces) must agree for two
surfaces if the two surfaces are congruent or even only
isometric, cf. [8]. Hence this gives us here a necessary
criterium that must be fulfilled if two surfaces are tested
for global isometry. For this research subject (as prelimi-
nary investigations) two master theses of F.-E. Wolter’s stu-
dents T. Howind and T. Altschaffel are now finished. T.

Howind treats in his master thesis planar domains, while
T. Altschaffel has been investigating the spectrum of the
Laplace-Beltrami Operator for some classes of surfaces in
3D.

Figure 2. Geodesics emanating from a com-
mon point on an implicitly defined cubic sur-
face

The second of these additional methods testing shape
similarity has been described and discussed with many de-
tails in a paper that the first author wrote with his for-
mer (and current) MIT colleagues T. Maekawa and N. Pa-
trikalakis, cf. [5]. That paper considers stable umbilics as
a fairly robust surface shape feature characterizing (stable)
singularities in a net of principal curvature lines on the sur-
face. If a surface patch is only mildly deformed then these
stable umbilics occur again on the deformed surface. Hence
those stable umbilics provide local or semi local shape fea-
tures useful to detect (or also to disprove) local similarity
between surface regions on different surfaces. One could
disprove local shape similarity of surface patches if their
umbilical point structures disagree!

The preceding retrospective outline describing the gen-
esis of this paper’s material within the lead author’s aca-
demic biography is not quite complete. During the lead au-
thor’s tenure at Purdue University 1987-1989, he pursued
as sole principal investigator a research project supported
by the Army Research Office (Grant DAAL-03-88-K0186).
Out of that project called “Project Riemann” came an (au-
tonomous) programming system with the following capa-
bilities: A user could input into the system expressions de-
fined by elementary functions describing surfaces either im-
plicitely or parametrically. Then the system would perform
first symbolic and finally numerical calculations that would
compute surface geodesics (starting from a given surface
point), cf. figures 1-3. The system could also compute
curvature line wire frame models of surface parts (see the
dark grey lines in figure 3). The system would also visual-
ize the computed geodesics and curvature lines. In summer
1988 under the lead author’s guidance and supervision the
programming of the project Riemann system was done by



a group of enthusiastic and talented mostly undergraduate
(sophmore) students at Purdue University. That group in-
cluded B. Johnson, J. Lambers, S. Cutchin, S. Goehring,
and T. Hausmann the latter as a masterstudent. Figure 1
shows a result computed by the Project Riemann system
displaying geodesics emanating on a wave like surface from
a center point. It appears that in 1988 -(in those now some-
what early days of computational surface geometry)- the
Project Riemann System was the first program system pro-
viding all the aforementioned capabilities. Figures 1-3 have
been prepared by the first author’s student A. Kaiser at the
Welfen Laboratory using the “Project Riemann” code.

Figure 3. Hyperboloid

After this retrospective the lead author wants to say thank
you to all the students he worked together with on research
projects during his academic career. The names listed above
present only a part of those students. It here only acknowl-
edges the students as far as they were involved in work re-
lated to the general subject of the current paper. It may
be noticed as interesting that the vast majority of students
involved in the related research projects were either under-
graduate or master students. Hence this research resulted
from activities that could be understood as part(s) of ad-
vanced undergraduate education. This is no coincidence be-
cause it reflects the lead author’s belief that ultimately the
best, most intense and really lasting learning is done while
doing research i.e. while inventing, seeing, understanding,
discovering something original. The reason for this may
be the universal very human desire to be and to do some-
thing unique and lasting and gain (unique) identity with a
lasting impact beyond our physical existence from this. At
least in some ways everybody appears to have some artistic
desires and some exploring mind. Therefore according to
the lead author’s experience whenever students sensed that
they were exploring completely new roads and ideas and
solving new challenging tasks that had resisted against re-
search efforts then the students could develop tremendous

energy, curiosity, enthusiasm and patience that they could
not develop easily when working on routine problems.

4 Two Methods for Shape Interrogation and
Classification

We start with a short description of a global method to
test similarity of surface shapes employing Eigenvalues of
the Laplace Operator and the Laplace-Beltrami Operator.
Hence this will suggest an approach to treat the fundamental
problem 2.1.

4.1 The Laplace-Beltrami Operator for Surfaces

In order to avoid more lengthy descriptions we use sim-
plifications that are not always completely precise in order
to explain the relevant concepts. Let S be a surface patch
presented by a twice continuously differentiable paramet-
ric map r(u,v) defined on a simply connected planar do-
main D with smooth boundary curve 8D. More general we
may require that D fullfills the condition that every point in
D has an open neighborhood U in D such that U can be
mapped with an infinitely often continuously differentiable
diffeomorphism onto a convex set in the plane; (an n-times
continuously differentiable diffeomorphism must have an
inverse mapping being n - times continuously differentiable
as well).

In order to define the Laplace-Beltrami Operator we need
to introduce some notations from differential geometry. We
need the first fundamental tensor matrix whose elements
E,F,G are defined by the inner products of the partial
derivatives of the surface parametrization »(u, v). Introduc-
ing now the subsequent notations will be convenient. For
this we also assume below that

v:R* >R

is an infinitely often continuously differentiable func-
tion.
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Furthermore the coefficient functions

T,

are called Christoffel Symbols, they can be expressed in
terms of the elements of the first fundamental tensor matrix
and its derivatives only, see [7].

Now we can define the Laplace-Beltrami Operator as a
differential operator assigning to a function



v:RZS R
the subsequently defined function:
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By this we obtain a linear Operator defined say on the
vector space of infinitely often differentiable real valued
functions that are defined to be zero on the boundary of the
domain D. It is well known that the Eigenvalues of the
Laplace-Beltrami Operator are all not negative and yield
the same values for two surfaces A, B that are isometric.
Isometric means there is a diffeomorphism from A to B
that maps every smooth curve on surface A onto an equally
long curve on B. This “Laplace-Beltrami Operator (spec-
trum) concept” works for closed surfaces as well! Clearly if
two solids are congruent then their boundary surfaces must
be isometric and hence their Spectra (collections of Eigen-
values) of their respective Laplace-Beltrami Operators must
agree. For planar surface patches (being isometric to planar
domains) the general Laplace-Beltrami Operator becomes
the classical Laplace Operator. Investigating closed sur-
faces it would be desirable to compute the Spectrum of the
3-dimensional Laplace Operator with respect to the solid
body in the 3-dimensional Euclidean space.

Looking at a variety of sample surfaces our preliminary
investigations contained in the master thesis of A. Howind
and T. Altschaffel (dealing especially with the Laplace-
Beltrami Operator), indicate that those spectra appear to
show promise to be useful for the construction of new shape
invariants helpful to analyse shape similarities. For doing
the actual computation of the Eigenvalues one would usu-
ally work with a variational form of the given Eigenvalue
problem stated above in its partial differential equation ver-
sion. Hence we have treated the given Eigenvalue problem
in its equivalent variational form (evaluating integrals) em-
ploying Finite Element methods.

4.2 Umbilical Points and Curvature Line Wire
Frame

We consider solids with a regular curvature continuous
boundary surface i.e. the boundary surface can be locally
represented by surface patches having (at least) twice con-
tinuously differentiable parametrizations whose Jacobians
always have rank two. Any boundary surface of the solid
can be represented by a wire frame model built by (orthog-
onal) families of principal curvature lines, shown in figure 4
(see also the grey lines in figure 3). This wire frame model
is intrinsic to the surface (point set). This means it is inde-
pendent of the chosen (local) parametrization of the surface
that might be used to compute the curvature line wire frame.

Figure 4. Curvature lines and two umbillics
indicated by dots on an ellipsoid

Generically this curvature line wire frame surface model
is built by rectangular meshes. However there do typically
exist also some exceptional points on the surface where the
otherwise rectangular wire frame structure is violated i.e.
here the wire frame has singularites (see figure 4, the two
strong dots). These special singular points are umbilics of
the given surface i.e. at an umbilical point p all normal cur-
vatures agree for all tangent directions at the surface point
p. (If a closed surface S is homeomorphic to a sphere then
it follows from a topological argument that S must have
at least one umbilic.) One could also say that the mini-
mal and maximal principal curvature at an umbilic agree or
equivalently every tangent direction at an umbilic is a prin-
cipal curvature direction. A principal curvature direction at
a point p can be defined as a tangent (angular) direction 3
(at the given point p) where the normal curvature assumes
a local extremum when compared with normal curvatures
at p that correspond to angular directions close to 3. The
curvature line pattern near an umbilic has been classified
into different types. There only exist three different stable
types of umbilics where the curvature line pattern will re-
main stable (unchanged) with respect to small deformations
of the surface!

Those three stable umbilics are star, monstar, lemon,
see eg. Maekawa, Wolter, Patrikalakis 1996 in [5]. The
three characteristic curvature line pattern in a neighborhood
of the respective stable umbilic are described in the three
subsequent figures, adapted from [5]:

Figure 5: Left image a star, right a monstar umbilic, both
have three curvature lines passing through the umbilic. The
three tangents for the three curvature lines passing through
the umbilic in the monstar case are contained in a right an-
gle. They are not contained in a right angle in the star case.

Figure 6 shows an umbilic of lemon type. There is only



Figure 5. Star and Monstar Umbilic

one curvature line passing through this umbilic.

We now observe the following characteristic properties:
Three lines of curvature are passing through umbilics of star
and monstar type, cf. figure 5, while only one curvature
line is passing through an umbilic of lemon type, cf. figure
6. The criterion distinguishing the star and monstar is that
for the monstar case the three tangent lines of the curvature
lines passing through the umbilic are contained in a right
angle while in the star case they are not, cf. figure 5.

Figure 6. Lemon Umbilic

If two curvature continuously closed surfaces S and S’
are obtained from each other by deformations (being suffi-
ciently small) then the stable umbilics on both surfaces can
be matched in one to one correspondence! Furthermore in
the generic case i. e. if there are only stable umbilics on
both surfaces S and S’ then it is possible to find appropriate
curvature line wire frame models for both surfaces S and
S’ that can be aligned and matched quite well. Hence we
here have concepts and methods that are quite appropriate to
support “tests for local and global approximate shape iden-
tity of solid objects” contributing to treat the fundamental
problem 2.1.

4.3 Medial Axis Transform as Basis for Shape In-
terrogation and Intuitive Design

In this paper we suggest concepts for an interface with
an intuitive design control resembling shape moulding em-
ploying the Medial Axis Transform. Therefore we have to
explain the Medial Axis Transform first and we also want to
discuss and show that the Medial Axis Transform is a nat-
ural tool to characterize shape features of a solid body in
space. The importance of the Medial Axis may have been
conjectured first by the late H. Blum whose paper [1] tries
to explain in heuristical ways that the Medial Axis should
be of interest in the context of biological shape.

Definition (Medial Axis and Medial Axis Transform):
The Medial Axis of a solid D in the n-dimensional Eu-
clidean space is a subset of D containing all points being
center of a disc of maximal size that fits in the solid D. We
associate with the Medial Axis of a domain D the maximal
disc radius function, assigning to a Medial Axis point p
the radius of the maximal disc with center p. We assume in
the Medial Axis case that D is closed and that the boundary
0D of D is atopological (not necessarily connected) hyper-
surface of the Euclidean Space. The Medial Axis together
with the associated maximal disc radius function constitute
the Medial Axis Transform of a solid

An example of the Medial Axis of a domain D is shown
in figure 7 from the senior thesis of the first author’s former
student O. Etzmuss.

To simplify the matters we shall generally assume (un-
less we say otherwise) that the boundary of the solid is cur-
vature continuous i.e. that it can be parametrized locally by
a regular twice continuously differentiable function whose
first derivative has maximal rank. (There are many possi-
bilities of relaxing these curvature continuous smoothness
assumptions for the boundary, see [2].) We consider here
in particular two classes of solids i.e. those where the solid
is 2- or 3-dimensional, hence the solid’s boundary may be
built by arcs or surface patches.

Figure 7. Medial Axis



Figure 7 shows for a 2D-solid the Medial Axis whose
boundary points are the four start vertices of medial arcs.
The Medial Axis in this figure is built by five medial arcs of
which four have boundary vertices.

Figure 8. Medial Modeler

Figures 8, 9 and 11 are adapted from the first author’s
student A. Howind’s master thesis. Figure 8 shows a collec-
tion of maximal spheres contained in the solid. Figure 9 and
later figure 11 depict the boundary curve of the Medial Axis
of the 3D-solid whose boundary surface is partly shown in
figure 9 and in figure 11 by parts of spherical caps. The Me-
dial Axis of this solid here only contains one medial surface
patch. All the points of the medial surface are centers of
maximal spheres that still fit into the solid, cf. figure 8.

Figure 9. Medial Modeler

Assuming curvature continuous boundary of the solid,
the Medial Axis will not have points that accumulate
densely in some open subset of the ambient Euclidean
space, see [2]. Under practically reasonable assumptions

that the surface boundary is say defined by splines (or more
generally by piecewise polynomial or real analytic or even
piece wise analytic functions) it can be shown that the Me-
dial Axis is a semianalytic set that can be defined using zero
sets and subzero sets of real analytic functions. The Medial
AXxis can here be locally assembled by parts contained in
finitely many zero sets of analytic functions. Those func-
tions (often) arise from the condition that (generically) the
Medial Axis can be assembled locally by a finite number of
medial sets containing points being equidistantial to two
appropriately chosen (disjoint) boundary arcs or surface
patches contained in the solid’s boundary. This implies
roughly spoken that under practical assumptions the Medial
Axis is (generically) built by a finite union of arcs or (usu-
ally bordered) medial surface pieces that can be computed
numerically if they are not too many.

In order to state the preceding and the subsequent re-
marks on the analytical structure (zero-set structure) of the
Medial Axis mathematically precisely and completely one
would have to present a longer discussion containing more
formal elements. We have chosen a simplified (not quite
complete and correct) description assuming still real ana-
lytic boundary for the solid.

Computations of the Medial Axis are also possible if the
boundary is not curvature continuous but e.g. given by pla-
nar facets. Figure 10 illustrates this situation.

Figure 10. Medial Axis Structure indicated for
a three dimensional Torus

Figure 10 is adapted from the master thesis of the lead
author’s student P. v. Grumbkow. This thesis deals with de-
veloping an algorithm and a program that could compute the
Medial Axis of a solid object bounded by planar facets. Fig-
ure 10 illustrates the Medial Axis of a 3D-torus being a solid
with a (topological) torus boundary surface. This solid is
created by removing an open rectangular solid from a solid
cube. The Medial axis is generally defined as the set of cen-



ters of maximal discs that fit in the solid. The Medial Axis
of 3D-Solids is typically built by a union of smooth bor-
dered medial surface pieces with smooth boundary curves.
Figure 10 depicts the boundary edges and boundary vertices
of some smooth medial surface pieces (the union of which
yields the Medial Axis).

Now we return to the case where the solid’s boundary is
curvature continuous. Here the boundary points of the Me-
dial Axis i.e. points that are contained in the boundary of
only one medial surface piece (3D-solid case) or only one
medial arc (2D-solid case) are given by points being cur-
vature centers with respect to appropriate boundary points.
Here in the 2D-solid case any Medial Axis boundary point
is a curvature center of the solids boundary curve at a point
where the boundary curvature attains a local maximum. In
the 3D-solid case boundary points of the Medial Axis are
given by curvature centers with respect to the minimal prin-
cipal curvature radius of the boundary surface, the latter cur-
vature radius function evaluated at the appropriate boundary
points. Let us assume that in the 3D-solid case some bound-
ary points on a medial surface patch are given by a curve b
(cf. figure 11). Then typically the (minimal) curvature ra-
dius function has a local minimum when this radius func-
tion is restricted to any single surface curve that crosses the
projection curve P(b) orthogonally, cf. figure 11; here the
projection curve P(b) is obtained as an orthogonal projec-
tion of b onto the boundary surface i.e. every point of P(b)
is joined via the surface normal to its corresponding (min-
imal radius curvature center) point on b. It is not difficult
to prove, that the curve P(b) is a minimum principal cur-
vature line on the solid’s boundary surface. The aforemen-
tioned family of orthogonal curves has tangential directions
at points on P(b) being maximum principal curvature di-
rections of the solid’s boundary surface.

As already indicated, the preceding statements can be
understood more easily by looking at the illustrating fig-
ures 7 and 11. All the boundary vertices of the Medial
Axis in figure 7 correspond to local curvature maxima of
the boundary curve. Figure 11 shows some spherical caps
beeing parts of the solid’s boundary surface. It also shows
the boundary curves of the Medial Axis of the solid depicted
by the closed curve in the figure. Projecting the Medial Axis
boundary edge b on to the boundary surface yields a maxi-
mum principal curvature line P(b).

The following result shows why the Medial Axis is in a
topological sense fundamental for the shape of a solid as it
essentially contains the Homotopy type of a solid because it
is a deformation retract of the solid. We have the following
result, from [2]:

Topological Shape Theorem of the Medial Axis:
The Medial Axis M (D) contains the essence of the topolog-
ical type of a solid D.

Figure 11. Medial Modeler

Let &D be C?- smooth (or let 8D be 1-dimensonal and
piecewise C2- smooth, with D C R?) Then the Medial Axis
M (D) is a deformation retract of D thus M (D) has Ho-
motopy type of D.

The proof of this theorem shows that it is possible to de-
fine a Homotopy H (z, t) as explained below the next figure
describing a continuous deformation process of the solid D.
This deformation process is depending on the time param-
eter t. The deformation starts with the solid being in the
figure a rectangle with a circular hole. During the deforma-
tion points are moved along the shortest segments starting at
the solids boundary 8D until the segments meet the dotted
Medial Axis. The shortest segments are indicated by arrows
in figure 12.

Figure 12. Deformation retract

Homotopy
H(z,t): (D\OD) x [0,1] — (D\0D)

such that

H(z,0) = xzVze D\0D

H(z,t) = xVxe M(D)

H(z,1) = R(z)with R: D\dD — M(D)\6D

Definition of the Homotopy:

H(z,t) : x + td(z,v¢(z))Vd(OD, )



d(z,y) denotes the function describing the distance be-
tween variable points z,y; Vd(xz,y) describes the gradi-
ent of the distance function d(z,y). () is defined as
point where the extension of a minimal join from 0D to
x € (D\OD) meets M (D).

5 Geodesic Medial
Voronoi Diagrams

Axis and Geodesic

Figure 13. Shortest geodesic joining two sur-
face arcs

So far we have been discussing the Medial Axis in the
Euclidean Case. In order to define the Medial Axis we need
to be able to compute a distance disc D(p,r) with center p
and radius r. D(p,r) contains all points z that have a dis-
tance d(p, =) not larger than r to the point p. During the last
years we could show that it is possible to also compute the
Geodesic Medial Axis and Geodesic Voronoi Diagrams on a
free form surface S, see [3], [4]. They are defined like their
Euclidean counter parts. However now the distance d(p, x)
between two surface points p, z is given by a shortest sur-
face path on S joining the points p and . This shortest path
gives the (minimal) geodesic (surface) distance between p
and z. The path may not be a Euclidean Segment because
the latter may not be contained in the surface S. Figure 13
is illustrating a related example. This figure shows a sur-
face curve whose length yields the minimal geodesic dis-
tance between any two points contained in the (different)
sets joined by the curve. It is adapted from the doctoral the-
sis of the lead author’s student T. Rausch. This figure shows
two curves (point sets) on a surface that are joined by a min-
imal possible surface path. The length of this path gives the
shortest distance on the surface between any two points in
the two sets that are joined in figure 13.

Figure 14 is adapted from the lead author’s student T.
Rausch doctoral thesis. It shows a system of closed curves
being geodesic circles. Each of those geodesic circles con-
tains only points that have the same geodesic distance to the

Figure 14. System of Geodesic Circles

center.

All the figures 1-3 stemming from project Riemann code
show systems of geodesics on surfaces emanating from a
common point. Geodesics are defined as solutions to certain
second differential equation systems. All surface curves be-
ing shortest joints of their end points are geodesics. Hence
computing geodesics is important in order to compute a
geodesic circle with center p and given radius e. This
geodesic circle contains all the end points of all shortest sur-
face paths from p to any surface point if the path has length
€, cf. figur 14 and cf. also figures 1-3.

Geodesics are locally shortest surface curves. This
means a sufficiently small subarc of a geodesic is a shortest
surface path joining the end points of the subarc. A geodesic
(being a locally shortest surface path) may not be the (glob-
ally) shortest connection of its endpoints as can be seen by
taking a geodesic circular arc on the unit sphere that starts
at the southpole and ends shortly after passing through the
north pole. Any geodesic will only be the shortest joint of its
end points until it intersects with another geodesic joining
the same end points. This happens in figure 1 where two
geodesics emanating from the same initial point intersect.
Both of those intersecting geodesics are not shortest joints
between their common start point and any point on the path
the geodesic will meet after passing the intersection point.

5.1 Geodesic Medial Curves on Free Form
Surfaces

A basic element for the computation of Geodesic
Voronoi Diagrams as well as for the computation of the
Geodesic Medial Axis will be the computation of medial
curves. Those are curves containing only points being
equidistantial to two given surface curves. Equidistantial
here is understood with respect to the geodesic distance on
the surface. The Figure 15 shows such a medial curve that
contains only points being geodesically equidistantial with
respect to both of the two neighboring curve point sets! The
methods for computing such curves are explained with de-
tails in [3].



Figure 15. Geodesic Medial Curve

5.2 Geodesic Voronoi Diagrams

y
]

s
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Figure 16. Geodesic Voronoi Diagram on a
wave like surface

Figures 16, 17 and 18 show geodesic Voronoi Diagrams
on surfaces, cf. [4]. The Geodesic Voronoi Diagram are
defined with respect to the finite point set P (given by the
black dots) on the surface S. Any of those geodesic Voronoi
Diagrams are given by the black edges. Each of those edges
consists of points that are (geodesically) equidistant with
respect to two (specific) points of the discrete set P. Here
the geodesic distance between two given surface points is
defined by the minimal length of all surface curves joining
the two given points. As in the Euclidean case the geodesic
Voronoi Diagram partitions the surface into separate open
domains. Each of those open domains contains exactly one
point p of P. Together with p, the respective open domain
contains all surface points whose geodesic distance to p is
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Figure 17. Geodesic Voronoi Diagram on a he-
licoid

smaller than to any other point in the set P. The edges of
the geodesic Voronoi Diagram are built by medial curves
containing points that are equidistantial with respect to two
given points (or equivalently to two small geodesic circles
both of some small radius €). This explains why for this
computation we can use the previous experience from com-
puting medial curves.

Figure 18. Geodesic Voronoi Diagram with a
proximity region bordered by only two edges

5.3 Geodesic Medial Axes

The pictures left and right in figure 19 show geodesic
medial axes. They are adapted from the master thesis of the
first author’s student M. Baer. Those figures illustrate the
tree-like structure of the geodesic Medial Axis on curved
(simply connected) surface patches, see also figures 20 and
21 that are adapted from M. Baer’s master thesis. The shape



Figure 19. Geodesic Medial Axis

of these patches resemble that of hilly landscapes. The dark
curves depict both the boundaries of these surface patches,
and the geodesic medial axes that here are topological trees.
In analogy to the Euclidean situation every point of the
geodesic Medial Axis on a bordered surface B is the cen-
ter of a geodesic disc of maximal size that is still contained
in B. On any surface S a geodesic disc D(p,r) with cen-
ter p and radius  contains all points on .S whose (minimal)
geodesic distance to p is smaller or equal to . The minimal
geodesic distance between two points p and ¢ on a surface
S is defined by the minimal length of all curves in S that
joinpand q.

Figure 20. Geodesic Medial Axis of a bordered
subsurface of a NURBS surface patch

5.4 Computational
Speed

Concepts, Accuracy and

The essential parts of Voronoi Diagrams and Medial
Axes are built by curve arcs being geodesic medial curves.
Numerical tests and computational experiments done in the
context of [3] and further studies done later in O. Sniehotta’s
senior thesis and various test done within the context of R.
Kunze’s master thesis and later research done at our lab in-
dicate that with our methods it appears to be possible to
compute the medial curve with a positional accuracy of
10~12 when all the involved computations are done with
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Figure 21. Geodesic Medial Axis of a bordered
NURBS surface patch

double precision. Our fastest computing machine used for
these computations was an SGI Octane equiped with two
MIPS R10000 processors (250 Mhz) - of 1998 meanwhile
being considered as fairly slow - would compute medial
curves (depending on their length) within less than 15 sec-
onds and would compute a complete Voronoi Diagram (de-
pending on the number of points involved) within a few
minutes. Most computations done for the Voronoi Dia-
grams took place in 1997 and were done on a machine
much slower than the Octane purchased for our laboratory
in 1998.

The computations for the Geodesic Medial Axes could
take several minutes on the Octane depending on the num-
ber of edges that the Medial axis tree would have. It should
be said that the used algorithms were not completely opti-
mized neither was their implementation. All the algorithms
applied in this context used differential equation methods
for computing medial curves. In this context it was also nec-
essary to employ differential equation methods as to com-
pute tangent vectors of geodesic offset curves.

A geodesic offset on a surface S is defined with re-
spect to some given parametrized progenitor curve ¢(t) on
the surface S. A geodesic offset with geodesic distance s
from the progenitor curve is given by a curve t — O(s, t)
where each point O(s,t) is an end point of a geodesic on
S that starts at point ¢(¢) with an initial direction orthogo-
nal to the progenitor curves tangent ¢’(¢). The orientation
of the aforementioned starting directions of the family of
geodesics must be chosen consistently such that the curve
t — O(s,t) (or more general the function O(s, t)) will be-



come a continuous function. To show the latter continu-
ity property we also use the fact that the endpoints of the
geodesics are obtained by solving an initial value problem.
This initial value problem yields the geodesics as solutions
of the geodesic differential equation system requesting as
input the geodesics starting point and starting vector. Both
initial data are obviously continuously dependent on the
progenitor curves parameter ¢. Employing the latter con-
tinuity it is a standard consideration to prove that the offset
function (s,t) — O(s,t) will be continuous.

Taking the bisector of two tangent vectors of two appro-
priately chosen intersecting geodesic offsets will give the
medial curve’s tangent vector because the medial curve can
be viewed as curve (locus) where appropriate systems of
geodesic offset curves intersect (see figure 22).

Figure 22. Two systems of offset curves inter-
secting on a medial curve

The fact that our implementations were not yet optimized
combined with the increased speed of modern processors
indicate that nowadays as of June 2000 the computation
time for Voronoi Diagrams and Medial Axes can still be sig-
nificantly reduced. This improvement might easily mean a
factor of 10 when compared with the computations of 1996
or so when [3] came out.

6 Practical Applications

6.1 Shape Reconstruction and Design using the
Medial Axis

The following considerations show that the Medial Axis
Transform i. e. the information contained in the Medial
Axis and in the maximal disc radius function can be used
to reconstruct the shape of the solid simply by building the
union of the maximal discs as to reconstruct the solid re-
construction theorem cf. [2]. This will also give the solid’s
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boundary surface constructed as an envelope surface with
respect to the maximal discs as indicated in the figures 23
and 25 below. It is obvious that keeping the Medial Axis of
a solid fixed and modifying the maximal disc radius func-
tion slightly will change the solid’s shape.

Reconstruction Theorem: Assume D is a solid in R™
with 8D a closed topological (n — 1)-dim manifold. If for
D the Medial Axis M (D) and the maximal radius function

r: M(D) = R, r(z) = d(z,0D) (1)
are given, then we can reconstruct the solid namely
D= [J K(zn@) )

z€M(D)

with K (z,r(z)) beeing a closed disc with center 2 and
radius r(z).

T

Figure 23. Representing a solid by a union of
maximal discs

6.2 Shape Design by Modifying the Radius
Function r(x)

M

Figure 24. Design (modifications) based on
the Medial Axis Transform

Obviously keeping the Medial Axis fixed and modifying
the maximal disc radius function r(x) will change the Shape
of the solid as indicated in figure 24. Clearly mild uniform
growing of the radius function will result in a global fatten-
ing of the shape while decreasing the radius function will



give a global thinning of the shape. The boundary surface
of the solid (corresponding to the given Medial Axis and the
given maximal disc radius function) are defined by the enve-
lope curve (envelope surface respectively for 3D Solids) of
the family of maximal spheres. This has been known since
long time, cf. [1] and see the figure below adapted from the
first author’s student A. Howinds master thesis showing a
family of circles. The envelope curve of those circles is the
boundary of the 2D-solid in the plane. The centers of the
maximal circles (discs) are located on the Medial Axis of
the 2D-solid.

Figure 25. Design (modifications) based on
the Medial Axis Transform

Assume that the Medial Axis curve (or surface) is pre-
sented locally by a parametrizing function z(u) having a
continuous derivative z'(u). Then it is possible to com-
pute very rapidly the contact points of the maximal disc
with the envelope surface (being the solid’s boundary) if
at some Medial Axis point z(u) the derivative (informa-
tion) z'(u) and the value of the maximal disc radius func-
tion r(u) as well as the derivative »’(u) are known. This
allows to construct modeling systems that respond and dis-
play in real time precisely the complete results of modifica-
tions of the maximal disc radius function. In this context it is
possible that a designer indicates a location on the solid’s
boundary surface where modification (slimming or fatten-
ing) is desirable and the system will respond in real time
displaying the new solid’s boundary locally and globally
with the requested modification, cf. figures 24, 25 and 8.
An intuitive user interface imitating some features of shape
moulding should probably operate in an analog way such
that the control over the maximal disc radius function might
be exercised by performing pressure i.e. squeezing some

1The Medial Axis could be given also by an implicit function then mod-
ified methods would work as well.
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kind of mouse ball. The subsequent figures adapted from
A. Howind’s master thesis indicate in a prelimary study the
results of modeling efforts based on the concepts outlined
above. Certainly it would be desirable to incorporate many
more (moulding related) features into the system such as re-
moving of the solid’s material as to make the solid thinner.
This can be done as well employing the precedingly out-
lined geometric concepts. Somewhat more difficult would
be to integrate more complex shape modification features
into the system such as changing the shape by attaching
new medial arcs (or surface pieces) as new branches to the
Medial Axis cf. 7. Doing this would be important as to
allow major shape changes from the original solid within
the presented geometric concept. One would have to make
arrangements that the system automatically blends together
nicely the old parts of the solid and Medial Axis (where
little has been changed) with the new drastically modified
parts of the solid and the Medial Axis. The latter modifica-
tion and blending problems will become even more compli-
cated when the solid is supposed to change drastically the
homotopy type say e.g. because one wants to have a hole in
the solid implying a hole in the Medial Axis because of the
topological shape theorem (see also figure 12).

The following figure 26 from A. Howinds master thesis
show a simple prototype modeler offering shape modeling
design features employing also radius control of the max-
imal disc radius function. The various little circles in the
figure indicate values of the disc radius function.
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Figure 26. Medial Modeler

The next figure 27 shows design possibilities of the sys-
tem in detail modifying a solid initially chosen to be flat
by starting with a Bezier type medial surface of rectangular
shape as the initial Medial Axis control points are chosen to
be (uniformly) distributed in a plane. Similiar to the preced-
ing figure the little circles in this figure indicate the values
of the disc radius function.
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Figure 27. Medial Modeler

Finally the last figure 28 shows two solids where the ra-
dius functions have been growing too much such that we
have selfintersections of the solids. This must be excluded
by geometric criteria providing critical bounds for the ra-
dius function.

Figure 28. Selfintersecting surfaces sup-
posed to create a solid’s boundary

7 Conclusions

In this paper we gave an overview of results treating two
fundamental problems in Solid Modeling. The first problem
2.1 was calling for methods and criteria checking approxi-
mate shape identity of solids. For this purpose we sketched
two methods. A global method 4.1 investigating shape sim-
ilarity by comparing spectra of the corresponding Laplace
Operators that appear to offer a system of interesting new
shape invariants based on the fact that isometric surfaces
and solids must have the same spectra. The other method
4.2 employed the curvature line wire frame surface model
and its singularities (umbilics) to assess approximate shape
identity for solids. If a closed surface has only stable umbil-
ics then a sufficiently small deformation of the surface will
give a surface with a curvature line wire frame and stable
umbilics that can be approximately matched with the corre-
sponding curvature line wire frame model and with the um-
bilics of the old surface. If the umbilics are finite and stable
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then there will be a one to one correspondence between the
umbilics on both surfaces. This correspondence will also re-
spect the types of the umbilics. Most material in this paper
is related to the Medial Axis Transform. This material cov-
ers the topological shape theorem for solids stating that the
Medial Axis is a deformation retract of its reference solid
if the solid’s boundary is curvature continuous. (This regu-
larity assumption for the boundary can be relaxed further.)
It is explained that the concept of Medial Axis and Voronoi
diagrams can be extended naturally to free form surfaces
where these objects Medial Axis and Voronoi Diagrams are
now defined and computed using the geodesic distance on
the surface. The latter defines the distance between two sur-
face points by the length of the shortest surface path joining
these points. Finally this paper states a theorem saying that
(even under very weak regularity assumptions for the solid’s
boundary) it is always possible to reconstruct the solid from
a union of the maximal discs having their centers on the
Medial Axis. Hence knowing the Medial Axis and the asso-
ciated maximal disc radius function it is easy to reconstruct
the solid. It is explained that this result offers also a new
concept to construct a user interface allowing to modify and
design a solid’s shape by changing its maximal disc radius
function. The design modification results in fattening and
thinning of the shape in selected regions of the solids, if the
radius function is increased or decreased respectively in the
related regions of the Medial Axis. Controlling this shape
madification could probably be done most intuitively via a
haptic device allowing to shrink the maximal disc radius
by squeezing e.g. an elastic ball mouse after positioning the
ball (semi automatically) with its center in an appropriately
chosen (influence) area of the Medial Axis. This approach
offers new possibilities for intuitive shape moulding devices
appealing to the human haptic interaction with the world
in ways that appear to be closer to moulding than currently
used devices.
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