Welfenlab - Leibniz 
                        Universitšt Hannover Welfenlab Leibniz Universitšt Hannover

Untersuchungen zur Berechnung Medialer Mengen bez√ľglich gekr√ľmmter Referenzfl√§chen und -kurven im Euklidischen Raum

Dennis Allerkamp, Leibniz Universität Hannover, diploma thesis
04/2004

Die verschiedenen Repr√§sentationsformen geometrischer Objekte bilden einen wichtigen Aspekt der grafischen Datenverarbeitung. Unterschiedliche Repr√§sentationen bieten jeweils spezifische Vorteile, aber auch Nachteile. Daher m√ľssen f√ľr viele Anwendungen die verwendeten Repr√§sentationsformen mit Bedacht gew√§hlt werden.

Es gibt allerdings viele Problemgebiete, fur die noch keine befriedigenden Darstellungsformen der Geometriedaten bekannt sind.

Aus solch einer Situation entstand auch das Konzept der medialen Achse, das Harry Blum in den 60er Jahren des vorherigen Jahrhunderts zur Beschreibung biologischer Formen erdachte.

Die mediale Achse ist die Menge der Mittelpunkte aller maximalen Kugeln eines Bereichs und bildet eine Art Skelett desselben. Eine Kugel hei√üt maximal, wenn sie komplett in einem Bereich enthalten ist und keine andere sie umschlie√üende Kugel in diesem Bereich existiert. Zusammen mit den Radien der Kugeln stellt die mediale Achse eine vollst√§ndige Beschreibung der Form des Bereichs dar, wie wir sp√§ter noch sehen werden. Bis heute hat die mediale Achse in vielen weiteren Anwendungen an Bedeutung gewonnen. So wird sie zum Beispiel zur Gewinnung guter Triangulierungen beziehungsweise Tetraedisierungen und als intuitive M√∂glichkeit zur Gestaltung von Formen eingesetzt. Daf√ľr muss oft zu vorhandenen Geometriedaten zun√§chst die mediale Achse berechnet werden.

Diese Arbeit beschäftigt sich mit der Berechnung der medialen Achse von dreidimensionalen Körpern in Randflächendarstellung.

Kontakt: Franz-Erich Wolter

Top | Last Change 26.04.2009 | Editorial Responsibility 
| Imprint | © FG Graphische Datenverarbeitung